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Abstract—5G networks introduce complex challenges in mo-
bility management and energy consumption, including more fre-
quent handovers as users move between cells, network congestion,
service disruptions, increased power consumption due to higher
path loss, and the need for beamforming. This work performs an
experimental validation on optimal mobility management and en-
ergy consumption efficiency in SG networks fuelled by Artificial
Intelligence (AI) models. To achieve this, we conducted two real-
world experiments in a 5G testbed, assessing the: (i) dynamics
of handovers (HOs) between gNodeBs (gNBs) within a single
operator network; and (ii) energy consumption characteristics
of 5G base stations under various traffic conditions. To advance
location-aware and energy-saving intelligence in 5G networks, we
leverage adaptive Al-fuelled policy-enforcement mechanisms by
harvesting traffic data from the 5G testbed and learning patterns
for optimal energy consumption and mild handover events. The
results of this work demonstrate significant insights for network
operators which aim to reconcile performance network demands
with energy consumption limitations, and develop sophisticated
predictive models for large scale 5G network deployments.

Index Terms—energy efficiency, location-aware policy-
enforcement mechanisms, Al-fuelled predictive 5G network
mobility patterns

I. INTRODUCTION

In recent years, fifth-generation (5G) networks have funda-
mentally transformed user communication experiences. The
progression of 5G technology promises enhanced Mobile
Broadband (eMBB), ultra-reliable low-latency communica-
tion (URLLC), and massive machine-type communication
(mMTC), thereby providing dependable connectivity for di-
verse applications and emerging use cases [1].

Nonetheless, these advancements pose diverse challenges
in mobile communications, such as ensuring seamless user
connectivity and managing the increased energy consumption
necessitated by high-demand applications. The first challenge
pertains to mobile handover (HO), the process by which an
active connection is transferred from one base station (i.e.,
gNB, in the context of 5G networks) to another. This capability
is an essential aspect of such communication networks, given
the inherent mobility of users and the movement of devices
through different cellular coverage areas during use. HO is
critical for maintaining uninterrupted service to end users [2].
The second challenge involves the energy requirements of
base stations servicing 5G devices. The rising number of
devices demanding high bandwidth while preserving Quality
of Service (QoS) in densely used mobile environments leads

to power consumption issues that impact both environmental
preservation and the sustainability of extending 5G infras-
tructure. Although traditional network optimization techniques
offer partial solutions, the complexity inherent in modern 5G
networks necessitates more sophisticated approaches. Mobile
HO, a pivotal process for seamless connectivity, may encounter
inefficiencies such as delays, increased latency, and lapses
in Service Level Agreements (SLA) adherence, especially in
high-mobility scenarios. Similarly, the growing demand for
high-bandwidth applications, such as video streaming, exac-
erbates power consumption. Recent advancements in Al and
Machine Learning (ML) present new opportunities to analyse
real-time network data and dynamically optimize performance.
Al-driven models can predict optimal handover conditions,
minimize energy waste, and enhance network performance and
efficiency. However, the efficacy of these Al-driven solutions
should be rigorously validated through real-world experimen-
tal evaluations to ensure their reliability in 5G settings [3].

Crucially, the theoretical promise of Al-driven solutions
should be rigorously validated through real-world experimen-
tal assessments. This is the motivation of the proposed work,
which conducts extensive experiments on mobile handover
performance and power consumption, followed by Al-fuelled
analyses to explore optimizations under competitive conditions
and enforce policy-driven network actions employing rules.
The main contributions of this work encompass an experimen-
tal data analysis over a real 5G testbed highlighting enhanced
mobile handover performance and energy efficiency. They are,
as follows:

o We introduce an insightful evaluation of energy consump-
tion trade-offs during high-bandwidth streaming scenarios
by analysing 5G network data in diverse cases, which is
crucial for maximizing operational efficiency.

¢ We showcase the application of Al-driven models to de-
rive policies for enforcement on the 5G network through
rules, significantly advancing network reliability and en-
ergy efficiency.

e We employ these Al-fuelled network mechanisms to
allow for proactive HO and fine-grained control over
competitive metrics resulting in significantly improved
energy efficiency.

The rest of the paper is organized, as follows: Section II

provides the current literature review around 5G networks
efficient mobility management, and power consumption in



such networks while using Al and ML models. Section III
presents and describes the conducted experiments. Section IV
presents the deployed AI pipeline, Section V discusses the
experimental results, and Section VI concludes the paper.

II. LITERATURE REVIEW

The advent of 5G networks has brought forth unprecedented
demands on efficient mobility management, particularly in
handover procedures and energy consumption optimisation.
The need for seamless connectivity, low latency, and high
reliability has driven extensive research into optimizing 5G
handover and energy efficiency processes.

Several studies emphasize the importance of context aware-
ness for efficient handovers. Chabira et al. [4] focus on how
recent advances in Al, ML and Deep Learning (DL) are being
applied to improve predictive handover decisions and enable
real-time, adaptive load distribution. Similarly, Khan et al. [5]
present a thorough survey on existing solutions regarding
vehicularility management. Last, Song et al. [6] proposed
a context-aware handover decision algorithm that considers
network load, user preferences, and service requirements to
select the optimal target cell. All these works highlight the
shift from reactive to proactive handover strategies, leveraging
contextual data to improve handover efficiency. This work
differentiates by integrating a crucial, yet underexplored, di-
mension: energy efficiency as a primary optimization objective
alongside seamless 5G connectivity.

The application of Al serves as a promising avenue for
optimizing 5G handovers and energy efficiency. Jahandar et
al. [7] explored Al / ML for distributed handover management,
enabling collaborative learning across multiple base stations.
Silva et al. [8] examined mmWave handover optimization
for vehicular networks, demonstrating the need for beam
management and fast context transfer. Last, Papaioannou et
al. [9] introduced an adaptive and intelligent resource allo-
cation method driven by Al to increase network capacity.
These efforts underscore the potential of AI/ML to adapt
to the dynamic nature of 5G networks and optimize their
performance. The proposed work carves a distinct niche by
explicitly addressing the critical interplay between adaptive
handovers and energy efficiency through Al-driven resource
allocation.

Existing works are surveying the literature [10] and are
limited either on the context reliability leading to incorrect
handover decisions [11], or on efficiently balancing trade-
offs as optimizing 5G handovers involves balancing competing
objectives, such as energy efficiency, latency, throughput, and
reliability [12].

Understanding the limitations of non-Al schemes in 5G
implies that 5G handover relies on fixed thresholds (e.g.,
Received Signal Strength Indicator (RSSI), etc.), reactive
mechanisms, and frequent "ping-pong” handovers leading to
suboptimal cellular network management. Compared to the
above-mentioned works and non-Al schemes, the contribution
of this work is the proposition of a novel approach that
combines event-driven context reliability assessment for mild
handovers with a predictive energy efficiency method. The

Fig. 1. 5G Handover scenarios

merits of this work allow for proactive mitigation of context
incompleteness or uncertainties and a fine-grained control
over the trade-offs resulting in significantly improved handover
efficiency coupled with energy-efficient optimization.

ITI. CONDUCTED EXPERIMENTS

Our experiments have been performed at the University of
Patras 5G facility [13], an academic non-public 5G infras-
tructure. This facility offers end-to-end support to various
application verticals using the lab-based 5G infrastructure
for experimentation. We detail below the scenarios for mild
mobility HO and power consumption.

A. Mobility

The mobility scenarios are following and can be illustrated
in Figure 1:

« Mobility between cells served by the same gNB.

o Mobility between different gNBs that are served by the
same Access And Mobility Management Function (AMF)
of the 5G Core, which means that both are managed by
the same operator. Depending on the connectivity of the
gNBs, this HO can be performed either through the N2
interface (connecting the gNB with the AMF) or the Xn
interface (connecting gNBs directly).

o Mobility between gNBs connected to different AMFs.
This is the case when during a HO the device moves
to a gNB of a different operator. This HO is performed
over the N14 interface. In such cases agreements between
the operators allow such usage without the user having
to be subscriber to both operators.

« Mobility between different Radio Access Technology
(RAT), where the HO needs to be done from 5G networks
to 4G/LTE networks and vice versa, performed over the
N26 interface. This is not shown in Fig.l since the
conducted tests were under 5G netowrks only.

More information about the basic architecture of 5G and the
various interfaces can be found at [14]. In a 5G system, there
are various reasons for a HO to occur, and this HO can be
either initiated by User Equipment (UE) or triggered by the



network itself. Some of the factors that can trigger a HO
include:

o Signal Strength: If a neighbour cell’s signal is stronger,
then the signal from the serving cell becomes weak, and
thus a handover may be performed.

o Mobility Management: In high-mobility and/or dense
scenarios, such as with vehicles, high-speed trains, or
urban environments, the system predicts where the device
will move and prepares the handover in advance to avoid
interruptions.

o Load Balancing: If one base station is overloaded, a
handover may be triggered to a neighbouring cell with
less load, ensuring optimal resource utilization.

e QoS: In cases where the device experiences poor QoS
below the required SLA threshold, such as high latency
or low throughput, a handover can be used to connect to
a different base station offering better performance and
satisfying the SLA threshold.

The mobility experiments we conducted have focused on
HO between different gNBs that belong to the same operator.
Each gNB was serving a cell. The topology of the cells allowed
for a common coverage area between the two cells. The tests
consisted of a person moving around the coverage area holding
a mobile phone that was simulating traffic streaming. The
traffic pattern was to move starting from one gNB in the
direction of the other gNB, return to the first, and repeat. This
was repeated many times with various paths and random stops
between the two gNBs.

In Figure 2, the connected UEs per gNB are illustrated. In
this snapshot of the experiment, 8 handovers were performed
between the two gNBs, with the single UE alternating con-
nection between the two base stations.

To evaluate the various conditions that may affect the
handover decision, a number of metrics have been gathered
to be further analysed later. These metrics have been gathered
from the UE perspective and include, among others, the
Modulation Coding Scheme (MCS), which defines the number
of bits carried by every symbol during transmission and is
a signal quality indicator. In general, high MCS means high
quality and higher bitrates. Signal to Noise Ratio (SNR) for
the uplink direction is also considered. SNR is the ratio of
signal power to noise power. It is usually expressed in dB and
compares the actual useful signal to the background noise. The
Channel Quality Indicator (CQI) is a metric reported by the UE
to the gNB indicating the quality of the connection between
them from the UE perspective. The higher the value, the better
the quality. This value is used to calculate the MCS used for
transmission. All the metrics gathered for this experiment are
presented in Table I.

B. Power Consumption

The second set of experiments has been conducted measur-
ing the power consumption of a 5G base station under various
conditions. The gathered metrics are presented in Table II.
Besides the 5G-related metrics (i.e., bitrate, connected UEs,
etc.), power metrics have also been collected. These power
metrics were gathered for both the Radio Unit (RU) and the

Connected UEs per gNB over time

Fig. 2. Connected UEs per gNB

Name Unit Description

dI_bitrate bps Downlink bitrate.

ul_bitrate bps Uplink bitrate.

dl_tx Integer No. of DL transport blocks.

ul_tx Integer Number of received uplink trans-
port blocks.

dl_err Integer Number of downlink non-
transmitted blocks.

cqi Number | Last reported CQI.

11 Number | Last reported rank indicator.

dl_mcs Number | Average downlink MCS.

ul_mcs Number | Average uplink MCS.

pusch_snr Number Last received PUSCH SNR.

ul_path_loss dB Last UL path loss.

p_ue Number | UE transmission power in dB.

ABLET
METRICS GATHERED FOR HO EXPERIMENTS

gNB. In general, the RU handles the radio communication of
the network and is responsible for transmitting and receiving
radio signals to and from UEs by performing Radio Frequency
(RF) processing, such as modulation, demodulation, filtering,
and amplification. The gNB handles all the other aspects
of the 5G communication, from mobility management and
encryption to forwarding the traffic to the data path.

The experiments conducted aimed to collect these metrics
under different network usage scenarios. The scenarios fol-
lowed these steps: (i) connecting multiple devices, (ii) initiat-
ing traffic (i.e., uplink, downlink, or both), (iii) modifying the
connected UEs by dynamically adding or removing devices,
and (iv) modifying traffic (either increasing or decreasing it).

The results are presented in Figure 3. This figure shows that
the experiment-induced traffic variations directly impact the
power consumption of the gNB, while the RU power remains
largely unchanged. As uplink and downlink traffic increases,
the gNB power consumption follows a stepped pattern, rising
in discrete increments. This suggests that the gNB actively
scales its power consumption based on network demand rather
than maintaining a constant energy usage and that the gNB
increases its power only when traffic increases. Conversely,
when traffic decreases, the gNB power consumption also
reduces, reflecting a dynamic adaptation to network load.

In contrast, the RU power consumption remains relatively
stable throughout the experiment, showing little to no variation
in response to traffic changes. This implies a correlation
between bitrate fluctuations and gNB power consumption that
is directly influenced by the traffic load.
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Fig. 3. 5G Power vs. Throughput

Name Unit
cell_dl_bitrate bps
cell_ul_bitrate bps

Description
Cell DL bitrate.
Cell UL bitrate.

curA A The measured current.
pwrA w The measured power.
ue_count Integer Number of connected UEs.

TABLE I
METRICS GATHERED FOR POWER CONSUMPTION EXPERIMENTS

IV. DATA ANALYTICS PIPELINE

A critical component in the analysis of collected data is
the Data Analytics Pipeline. The analytics pipeline fulfills
two essential functions: (i) it aggregates telemetry data to
forecast handover occurrences, assess energy utilization, and
facilitate slicing and service orchestration; and (ii) it provides
Application Programming Interfaces (APIs) to reinforce the
Al as a Service (AlaaS) paradigm. The exposure of the learnt
patterns through AlaaS APIs facilitates the adaptation of the
5G testbed configuration, thereby optimizing its operational
efficacy. We harvest 5G data from the conducted experiments,
and we further feed the data analytics pipeline to learn patterns
about the HO events and power consumption. Last, the trained
Al models are being exposed via dedicated AlaaS APIs to
support a set of predictive tasks.

A. Data Aggregation, Cleaning and Normalisation

We aggregate the experimental data into a single data
structure, and add a new column specifying the handover event
for the first experiment. This new column is then used as the
target value (i.e., label) for the analysis in Section V. The same
procedure is followed for the power (energy) experiments, but
in these experiments, we use the exact value of power as the
target value to support a regression task. We then replace all
NaN values with zero (0), since all of them are numeric values
that vary over time. Last, we normalize the data by using
the standard scaling method (i.e., subtract by the mean value
and divide by the standard deviation), and in some specific
cases (e.g., in the Deep Neural Network (DNN) model) we
normalize by the Min-Max normalisation method.

B. Feature Extraction, Correlation and Selection

The features presented in Table I were extracted for both
gNBs in our experimental network setup and were labeled :
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Fig. 4. Top 10 Features correlated with Handover Event

Top 10 Best Features (ANOVA F-Value)
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Fig. 5. Top 10 Features selected by ANOVA F-value for Handover Event

node_a and node_b nodes. Each feature was recorded sepa-
rately for the two nodes using distinct names.

Before proceeding to the modeling phase, we perform
feature selection using correlation and other methods. Only
features related to the cell uplink/downlink bitrates, UE de-
vices, and details about the gNB service state are kept. Feature
correlation is then used as a statistical measure to under-
stand the relationship between the 5G network features. This
measure expresses how much two features change together.
Feature correlation is used to ease feature selection and extract
the most important features for the next step, which is data
modeling. Figure 4 and Figure 6 illustrate the correlation for
handover events and power consumption.

C. Data Analytics and Predictive Tasks

The curated data are used to train various Al models and
expose the AlaaS predictive tasks as APIs. We also benchmark
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over different DL and ML methods to measure their perfor-
mance through accuracy, precision, recall, and MSE based on
the learning task.

We chose classical methods (i.e., Logistic Regression, Ran-
dom Forest, GradientBoost) and deep neural network models
(i.e., DNN, DNN-LSTM) to keep a balance between sim-
plicity, speed, and predictive power. The DNN consists of
feed-forward fully-connected layers with ReLU activations,
whereas the DNN-LSTM augments that same stack with an
LSTM layer inserted after the second hidden layer to better
capture temporal dependencies in the input. This combination
lets us compare trade-offs in efficiency, and accuracy for both
“now” estimates and next-step forecasts.

We deployed three predictive tasks to leverage our 5G
telemetry data:

a) Model I: Time-Series Handover Classifier: A binary
classifier that ingests a sequence of network feature windows
Xi—741.+ (with T' = 30 s) and predicts whether a handover
occurs in the next interval:

g = Classiﬁer(Xt_TH;t), yr € {0,1}.

b) Model II: Static Network-Feature Regression (Power
Now): A standard regression mapping from current network
measurements X; to current power consumption F;:

Et = f(Xt)a

where f is learned via Random Forest, Logistic Regression,
GradientBoost, or deep models. This isolates the instantaneous
impact of network state on energy usage.

c) Model III: Dynamic Time-Series Regression (Power
Next): A forecasting model that combines the same net-
work features X; with one or more lagged power readings
{E{, E¢_1,...} to predict the*next energy value:

B =g(Xy, By, By_q,...).

This captures both network-driven effects and temporal effects
in consumption.

We split the data into training (80%) and test sets (20%) to
assess models’ accuracy. We trained both traditional ML mod-
els (e.g., Random Forest, Logistic Regression, GradientBoost)
and DL models (DNN, Long Short-Term Memory (LSTM)
+ DNN). All models use a 1D feature vector, except LSTM,
which takes a 2D input representing time-windowed features.

V. EXPERIMENTAL RESULTS

This section presents the experimental results on the teleme-
try data collected by the 5G testbed. We evaluate the per-
formance of the Al models using accuracy, precision, recall,
Mean Squared Error (MSE) and R-Squared according to the
learning task.

A. Preparatory Steps on 5G Datasets

We ingest 5G testbed telemetry into our Data Analysis
Pipeline to train AI models—benchmarking Random Forest,
Logistic Regression, Gradient Boost, DNN and a DNN model
with LSTM layers—and expose the resulting AlaaS predictive
tasks via APIs. We evaluate each method on accuracy, preci-
sion, recall, and MSE across three time-series challenges: fore-
casting future handover events with high precision; deriving
a regression model to predict critical power-reservation needs
from network features; and performing advanced time-series
regression that fuses historical network data with past power
consumption metrics to forecast future power usage.

B. Analytic Tasks and Results

Table III presents the evaluation metrics for the classifica-
tion models. Deep Neural Network (DNN) achieved the best
performance with 0.9684 accuracy, 0.8500 precision, 0.9500
recall, and an Fl-score of 0.8833, effectively balancing false
positives and negatives. K-Nearest Neighbors (KNN) followed
with 0.9263 accuracy but lower precision (0.5500) and re-
call (0.4833). Random Forest had 0.8947 accuracy and high
precision (0.8000) but a low recall of 0.3000, missing many
true positives. Gradient Boosting (0.8421 accuracy, 0.6083
precision, 0.4167 recall) and Logistic Regression (0.7895
accuracy, 0.3250 precision, 0.5167 recall) performed worse.
These results highlight DNN as the most effective model for
handover event prediction.

Classification (Handover Event)
Algorithms Accuracy | Precision | Recall F1
Logistic Regression 0.7895 0.3250 0.5167 0.3834
Gradient Boosting 0.8421 0.6083 0.4167 0.4034
Random Forest 0.8947 0.8000 0.3000 0.4200
K-Nearest Neighbors 0.9263 0.5500 0.4833 0.5100
DNN 0.9684 0.8500 0.9500 0.8833
TABLE TIT

HANDOVER EVENT - RESULTS IN [0-1] RANGE

In Table IV: Power (Energy) Regression, Random Forest
achieved the lowest MSE (0.005) and highest RSS (0.90),
making it the most accurate model. Gradient Boosting fol-
lowed closely with an MSE of 0.007 and RSS of 0.86. Linear
Regression struggled with an MSE of 0.014 and RSS of 0.74,
indicating difficulty in capturing non-linear patterns. The DNN



model performed better than the Linear Regression (MSE:
0.0135, RSS: 0.78) but was slightly inferior to tree-based
models.

In Table V: Power (Energy) Time-Series Regression,
LSTM+DNN outperformed all models with the lowest MSE
(0.0008) and highest RSS (0.95), making it the most effec-
tive for time-series forecasting. Random Forest and Gradient
Boosting had an MSE of 0.0145 and RSS of 0.67, showing
strong but slightly inferior performance. Linear Regression had
the highest MSE (0.016) and lowest RSS (0.64), making it the
least effective. The standalone DNN model had a higher MSE
(0.019) and RSS (0.95), performing worse than LSTM+DNN
but remaining competitive.

Random Forest and Gradient Boosting emerged as top
performers for non-time-series regression, consistently captur-
ing complex feature relationships, while LSTM-based DNNs
excelled at time-series forecasting by effectively modeling
sequential dependencies; in contrast, Linear Regression lagged
behind. For handover-event classification, the DNN achieved
the highest accuracy and balance in detecting cell transitions,
ensuring seamless connectivity. In power-reservation predic-
tion, tree-based models reliably anticipated critical needs,
whereas the LSTM+DNN architecture delivered superior fore-
casts of future consumption by fusing historical network and
power data. These results underscore the importance of a hy-
brid AlaaS strategy—leveraging traditional ML for structured
patterns and DL for temporal dependencies—to optimize both
mobility management and energy efficiency in 5G networks.

Power (Energy) Regression (Experiment 1)
Algorithm MSE RSS
Random Forest 0.005 0.90
Linear Regression 0.014 0.74
Gradient Boosting 0.007 0.86
DNN 0.013 0.78

TABLE TV

ENERGY REGRESSION - RESULTS

Power (Energy) Time-Series Regression (Experiment 2)
Algorithm MSE RSS
Random Forest 0.0145 0.67
Linear Regression 0.016 0.64
Gradient Boosting 0.0145 0.67
DNN 0.019 0.95
LSTM+DNN 0.0008 0.95
TABLE V

TIME SERIES REGRESSION - RESULTS

VI. CONCLUSION

This study has employed ML and DL methods to address
the need for adaptive decisions for handover events and power
efficiency in 5G networks through a comprehensive experi-
mental approach. By conducting a thorough data analysis on
top of a real-world 5G testbed, we derived valuable insights
into the trade-offs between energy efficiency and handover per-
formance, particularly in high-bandwidth streaming scenarios.
This empirical approach allowed us to demonstrate the efficacy
of Al-driven models in generating actionable network policies,

enforced through rules, to significantly enhance network reli-
ability and energy efficiency.

Furthermore, the implementation of Al-fuelled network
mechanisms enables proactive handover management and fine-
grained control over competing performance metrics, resulting
in substantial improvements in energy efficiency. This work
provides a practical pathway for optimizing 5G network op-
erations, demonstrating the potential of integrating Al with
real-world testbed data to drive policy-driven network actions.

Our future research will focus on extending these findings
to larger-scale deployments and exploring the adaptability of
our Al-driven models in dynamically changing network envi-
ronments, contributing to the development of more sustainable
and efficient 5G networks.
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