
Adaptive Policy-Driven Network Intelligence for
Edge-to-Cloud Continuum

Ioannis Pastellas
UBITECH Ltd

26 Nikou and Despinas Pattichi
Limassol 3071, Cyprus

ipastellas@ubitech.eu

Sophia Karagiorgou
UBITECH Ltd

26 Nikou and Despinas Pattichi
Limassol 3071, Cyprus

skaragiorgou@ubitech.eu

Mariza Konidi
Dept. of Electronic Engineering

Hellenic Mediterranean University
Crete, Greece

ddk184@edu.hmu.gr

Abstract—Edge-to-Cloud (E2C) is a rapidly emerging technol-
ogy that aims to reduce overall traffic to the cloud by enabling
Internet of Things (IoT) data processing as close to the data
sources as possible, either on near- or far-edge devices. This paper
introduces an adaptive, policy-driven framework for network
intelligence designed to optimize E2C applications by intelligently
enforcing network rules. By leveraging decentralized decision-
making and Artificial Intelligence (AI) driven application pro-
filing, the framework enables dynamic and adaptive network
resource allocation, significantly enhancing network capacity,
improving the capabilities between user applications and core
network resources, and better correlating Quality of Service
(QoS). The deployment of novel AI models, which leverage real-
world monitoring data from E2C environments, demonstrates
the framework’s ability to enforce adaptive network policies and
make informed decisions, contributing to more intelligent and
resilient networks.

Index Terms—network resource optimization, dynamic poli-
cies, runtime adaptations, extreme heterogeneity

I. INTRODUCTION

Modern communication networks rank among the most
extensive and intricate man-made systems. Their decentralized
structure contributes to the complexities of managing and
predicting outcomes. Therefore, basic robust design principles
such as continuous monitoring and redundancy are insufficient
to guarantee the ultra-reliable performance required for future
critical applications, including adaptive and dynamic network
intelligence.

To realise adaptive, policy-driven network intelligence in
Edge-to-Cloud (E2C) contexts, it is necessary to:

• Perform real time monitoring to detect changes and thus
promptly respond in an adaptive manner. An automated
agent capable of detecting alterations and learning about
network behaviour in real time can provide early warn-
ings or enforce policies in unexpected situations. When
linked to specific features, this agent can also activate
automatic and adaptive rules to mitigate such conditions.

• Detect and accurately classify events. In network manage-
ment, additional resources can be dispatched to locations
where unforeseen events occur. This is especially perti-
nent in E2C contexts, where intelligent event manage-
ment mechanisms should be implemented and enforced
at the remote points where problems arise.

• Simplify the core network and tackle edge diversity by
leveraging common protocols used by E2C applications.
This setup enables end users and administrators to interact
within a cloud environment based on service-oriented ar-
chitecture principles, providing also access to a common
shared platform for data exchange.

In today’s E2C continuum, the traditional methods for opti-
mizing network resources face limitations and insurmountable
complexities, especially in highly competitive situations [1].
Many valuable insights derived from network data depend
on Artificial Intelligence (AI) technologies such as neural
networks and deep learning. These techniques can be applied
across different environments to make decisions and determine
optimal runtime adaptations. Therefore, integrating AI with
network policies is essential to support adaptive mechanisms
that improve network services at runtime. A unified state
machine is needed to act as an orchestrator, coordinating
network resources, interacting with AI model results, and
enforcing adaptive policies to dynamically allocate compute
power, memory, bandwidth, cache capacity, and channel re-
sources based on application workload and demand.

The merits of this paper are as follows:

• Harvests real time monitoring data collected from diverse
and simulated application contexts over a real-world E2C
testbed. This data is further used to assess network
resource usage and plan for optimal resource allocation,
runtime adaptations, and optimisation.

• Applies real time data analytics derived by predictive
and prescriptive learning tasks, which are crucial for
E2C applications that require immediate responses while
considering energy limitations, dynamic bandwidth allo-
cation, and dimensioned compute resources.

• Enforces adaptive and policy-driven mechanisms to sup-
port network intelligence, enabling the creation of multi-
ple virtual overlay networks with different characteristics,
thereby serving multiple applications efficiently.

The rest of the paper is structured as follows: Section
II provides a review of the current literature on innovative
methods for adaptive data-driven mechanisms targeting the
E2C continuum. Section III offers a detailed overview of
the architecture design and deployed frameworks. Section IV



discusses our experimental approach and scenarios applied
to evaluate the adaptive, policy-driven network intelligence
mechanisms, while Section V presents the experimental re-
sults. Finally, Section VI concludes the paper and outlines
directions for future research.

II. LITERATURE REVIEW

Developing data-driven applications requires developers and
service providers to orchestrate data-to-discovery pipelines
across distributed data sources and computing units. Realizing
such pipelines poses two major challenges: programming
analytics that can react to unforeseen events at runtime and
adapting resources and computing paths between the edge and
the cloud. Balouek-Thomert et al. [2] propose a system stack
for the adaptation of distributed analytics across the computing
continuum. They evaluate the system’s ability to continuously
balance the cost of computation or data movement with the
value of operations relative to the application objectives. This
work differentiates to the proposed system as it leverages AI
model predictions to proactively derive optimal thresholds for
monitored metrics and workload classes such as requested
bandwidth classes.

The concept of the E2C continuum aims to significantly
reduce overall traffic to the cloud by enabling Internet of
Things (IoT) data processing as close to the data sources as
possible, whether on near- or far-edge devices. In this highly
dynamic environment, where IoT devices and edge nodes are
constantly changing their state and location, services running
on edge nodes must be scheduled, deployed, and managed to
ensure high service availability with appropriate Quality of
Service (QoS) parameters. Čilić and Žarko [3] propose a gen-
eral architecture for adaptive data-driven routing in the edge-
to-cloud continuum, implementating this architecture using
a content-based publish / subscribe approach. They evaluate
their implementation against a real-world use case scenario
for federated learning in an edge-to-cloud environment hosting
digital twins. This work distinguishes itself from prior research
in several key aspects. First, we introduce a comprehensive,
general architecture specifically designed for adaptive, policy-
driven network intelligence across the E2C continuum. Sec-
ond, we present a novel implementation of this architecture
that leverages application behavioural patterns and AI Models
to enable accurate resource allocation and proactive network
workload management. Finally, we rigorously evaluate our
framework using a real-world testbed simulating different
application contexts.

Wang et al. [4] present ShutPub, a publisher-side mid-
dleware that performs message filtering before forwarding
messages to the broker service. ShutPub limits the publisher’s
message dissemination based on subscriptions and their filters
while remaining transparent to the publisher. By shifting
content-based filtering from the broker to the publisher, only
messages with an intended receiver are transmitted. Their
prototype evaluation demonstrates that ShutPub can reduce
system strain on both the network and the broker without
simply shifting the burden to the publisher, who benefits

from sending fewer messages. Unlike ShutPub, which reduces
network and broker strain, our approach achieves similar
benefits without increasing complexity. Instead, we employ a
network intelligence mechanism that learns from application
behavioural patterns to adaptively enforce policies when events
occur.

Pfandzelter and Bermbach [5] introduce an approach to a
fog-native data processing benchmark that integrates work-
load and infrastructure specifications. While their approach
combines these specifications, our work goes beyond simple
offloading by introducing adaptive, policy-driven automation
through agents that support intelligent and efficient resource
utilization in the edge-to-cloud continuum.

Sekigawa et al. [6] analyse discrepancies and clarify tele-
com network requirements for Kubernetes. They also perform
qualitative and quantitative evaluations on several network ex-
tensions developed as open-source software. While their work
provides valuable insights into telecom network requirements
for Kubernetes and offers a comparative analysis of network
extensions, our work complements this research by focusing
on the dynamic aspects of network management. Specifically,
we propose and implement a novel architecture for an adaptive,
data-driven policy-enforcement mechanism, enabling real time
optimization of data flows based on application demands and
network conditions.

III. ARCHITECTURE

Network Functions Virtualisation (NFV) and Software De-
fined Networking (SDN) have transformed the framework for
deploying E2C services. On one hand, vast amounts of data
are produced every second by interconnected software and
hardware services. On the other hand, data collection and
data quality are often secondary concerns. Feature engineering
algorithms are currently applied in modern SDN infrastruc-
tures. High-quality data ensure that SDN controllers can
make precise adjustments to network configurations, optimise
performance, and proactively respond to evolving conditions.
Moreover, a well-crafted set of features not only enhances the
accuracy of predictive models but also facilitates intelligent
decision-making within a dynamic network environment.

SDN and AI are two distinct but increasingly interconnected
technologies that play a crucial role in modern network
management and optimisation. AI can play a pivotal role
in automating network policy management and monitoring
by providing intelligent and adaptive solutions to emerging
challenges in E2C applications. The applicability of automated
decisions via network policies is made by analysing network
traffic patterns. The real time monitoring of network metrics
allows the derivation of behavioural patterns for diverse appli-
cations, fine-tuning their thresholds, optimising the network,
identifying anomalies, performing predictive maintenance, and
predicting potential security threats. As a result, the interplay
between network management mechanisms, AI, and network
policies enhances the availability, security, stability, and scala-
bility of the edge-to-cloud ecosystem. This proactive approach
enables the development of dynamic network policies that



can autonomously adjust to evolving issues (e.g., load bal-
ancing in response to traffic bursts), thereby improving the
overall resilience of the network infrastructure. Additionally,
AI Models contribute to the creation of more sophisticated
control mechanisms that fine-tune their network policies based
on network / application / pod behaviour, infrastructure’s
environmental characteristics, and contextual information.

Fig. 1. Network Intelligence Architecture. The architecture is built on top of a
Kube-OVN Kubernetes-based cluster of nodes and pods. Network Intelligence
is applied by defining and enforcing resource and network policies by utilizing
AI/ML predictions. AI/ML models are trained on logged data of different
nodes and pods running in the cluster that are monitored by Prometheus, and
Kepler and persistently stored in an InfluxDB database.

The overall architecture of this paper is described in the
following paragraphs. The architecture follows the principles
of Next Generation SDN (NG-SDN) and distributed intel-
ligence to secure onboarding and operation of a consistent
overlay network between edge and cloud nodes, as well as the
selection of a cluster head to manage the physical deployment
of applications.

The architecture consists of a Kubernetes [7] cluster of
nodes built on top of Kube-Ovn [8] CNI, allowing for both
the resource management capabilities of Kubernetes and full
network virtualization. This setup utilizes the most of the
networking functionalities, including Quality-of-Service (QoS)
management. The entire infrastructure (nodes, pods, and ser-
vices) is continuously monitored by utilizing different metrics
agents such as Prometheus [9], [10] to measure different be-
haviours of deployed applications and resources. This logging
data is further stored in an InfluxDB [11] database for long-
term persistence.

This process is responsible for generating and populating
network and other metrics to feed AI models. The results
derived from the AI model training serve to meet specific QoS
requirements (e.g., high availability, high bandwidth, etc.) and
Service Level Objectives (SLOs) (e.g., latency below 5ms).
The high-level conceptual architecture of the network intelli-
gence component is depicted in Figure 1. The core function-
ality of this component is to manage virtual overlay networks
between edge and cloud. The input consists of Network Rules
that dynamically update routing or replace a pod within the
cluster at runtime through policy-enforcement, as detailed in
the following sections. The component continuously feeds

itself with new measurements to optimize the deployments
based on the target QoS and SLOs. The architecture is further
enhanced by deploying real time monitoring of nodes and
pods.

A. Kube-OVN

Kube-OVN serves as the core virtual networking framework
of the data plane that will be extended in the context of SDN
and network intelligence. By default, Kube-OVN employs the
CNI chaining mode to augment its existing set of features. As
an open-source, cloud-native solution, it integrates OVN-based
Network Virtualization with Kubernetes, providing a powerful
networking solution that excels in both containerized and
VM-based environments and scenarios, while offering robust
multi-tenant networking capabilities. The high-level Kube-
OVN architecture is depicted in Figure 2. Kube-OVN enhances
Kubernetes networking capabilities with multiple advanced
features, though we will focus on the ones showcased in this
paper. It supports VLAN and underlay networks, enabling
better performance and direct connectivity to physical net-
works alongside traditional overlay networking. Virtual Private
Cloud (VPC) support allows multi-tenant networking with
isolated address spaces, including Elastic IPs (EIPs), NAT
gateways, security groups, and load balancers. Workloads can
be assigned either static or dynamically allocated random
IP addresses, while multi-cluster networking facilitates L3
connectivity across Kubernetes and OpenStack clusters. With
DualStack IP support, Kube-OVN enables IPv4-only, IPv6-
only, or dual-stack pod networking. Pod NAT and EIP manage-
ment ensure external traffic control similar to traditional VMs.
Additionally, IPAM for multi-NIC extends subnet and static
IP allocation functions to other CNI plug-ins like macvlan
and host-device. Dynamic QoS enables real time configuration
of traffic rate, priority, packet loss, and latency, optimizing
network performance within Kubernetes environments. Fur-
thermore, Kube-OVN also provides additional network metrics
that are logged and monitored using Prometheus.

Fig. 2. Kube-ovn High-level Architecture. The main components of Kube-
OVN (in dark blue) are illustrated and how they communicate (as denoted by
the arrows) with K8S components (light blue) and other components.

The core components of Kube-OVN that have been de-
ployed and configured for inter-pod communication and mon-



itoring are as follows:
1) Ovn-central:
• ovn-nb: Manages the storage of virtual network config-

urations and offers an API for virtual network admin-
istration. The primary interaction of kube-ovn-controller
involves configuring the virtual network through ovn-nb.

• ovn-sb: Stores the logical flow table created from the
logical network in ovn-nb, along with the current physical
network state of each node.

• ovn-northd: Converts the virtual network information
from ovn-nb into a logical flow table in ovn-sb.

2) Ovn-ovs:
• ovs-ovn: Functions as a DaemonSet deployed on every

node, featuring Open vSwitch, ovsdb, and ovn-controller
operating within the pod. These elements serve as agents
for ovn-central, facilitating the translation of logical flow
tables into tangible network configurations.

3) Kube-ovn-cni: This component, operating as a Dae-
monSet on each node, serves as a CNI interface imple-
mentation and manages the local Open vSwitch (OVS) for
network configuration. The DaemonSet deploys the kube-
ovn binary to each machine, facilitating interaction between
kubelet and kube-ovn-cni. This binary, located in the default
/opt/cni/bin directory, communicates CNI requests to
kube-ovn-cni.

kube-ovn-cni is responsible for configuring the specific
network to handle various traffic operations. Its key tasks
include:

• Configuring ovn-controller and vswitchd.
• Managing CNI Add/Del requests:

– Creating or deleting veth pairs and binding or un-
binding them to OVS ports.

– Configuring OVS ports.
– Updating host iptables, ipset, and route rules.
– Dynamically updating network QoS.

The primary resources monitored include Pods, Services,
Endpoints, Nodes, NetworkPolicies, VPCs, Subnets, VLANs,
and ProviderNetworks.

4) Kube-ovn-controller: This component serves as the con-
trol plane for the entire Kube-OVN system by translating
all Kubernetes resources into OVN resources. The kube-ovn-
controller monitors events related to network functionality
across various resources and updates the logical network
within OVN based on changes in these resources. The primary
resources monitored include:

B. Real-time Monitoring
The monitoring lifecycle is activated through a set of

daemon services, as depicted in Figure 1. We highlight that
all the metrics exposed by the node exporter of Prometheus
have been successfully integrated into InfluxDB, a time-
series database that ensures long-term data persistence. Key
monitoring components include:

1) Node Exporter: A Prometheus agent that exposes a
wide variety of hardware- and kernel-related metrics,
collecting essential Linux host metrics [12].

2) Kube-state Metrics: Kube-state-Metrics (KSM) [13] is
a straightforward lightweight service that monitors the
Kubernetes API server and produces metrics related to
the status of objects (refer to examples in the Metrics
section).

3) Kepler: Responsible for exposing metrics related to en-
ergy consumption [2]. Inspired from the work of Cañete
et. al. [14], this enables energy-aware E2C deployments.

4) Resource Optimization: Ensures efficient network re-
source management, preventing over-provisioning while
maintaining sufficient capacity for peak demand periods.

IV. EXPERIMENTAL SCENARIOS

In modern communication networks, the proactive allo-
cation of network resources is essential to meet the ever-
increasing demand for high-bandwidth, low-latency services.
In addition to that, proactive network resource allocation
helps maintain network and computing usage on track. This
approach involves anticipating future network conditions and
user requirements to allocate resources efficiently and effec-
tively ahead of time, in contrast to reactive methods, which
respond to real time demands and often result in suboptimal
performance due to latency and resource contention. The
proactive allocation of network resources is based on several
key principles:

1) Predictive Analytics: Harnessing the power of histor-
ical data in tandem with cutting-edge AI models to
accurately predict future network traffic dynamics and
intricate application behaviour.

2) Dynamic Runtime Adaptation: Continuously fine-
tuning resource distribution through real time monitor-
ing and forward-looking insights to optimize network
performance.

3) Quality of Service Management: Guaranteeing that the
network not only meets but succeeds in fulfilling strin-
gent QoS requirements for a diverse array of applications
and services, thereby ensuring optimal performance and
improved user experiences.

4) Resource Optimization: Orchestrating network re-
sources to prevent the pitfalls of over-provisioning, while
simultaneously ensuring ample capacity to accommodate
peak demand periods effortlessly and seamlessly.

A. Scenario

The scenario is described as follows. The figure represents
a network architecture with three edge devices labelled ”edge
device 1,” ”edge device 2,” and ”edge device 3,” all depicted
as oval shapes on the left side. Each device transmits data
to a central Gateway API, also represented as an oval shape
on the right side, via arrows indicating the traffic flow. The
label ”dynamic traffic” highlights that the Gateway API is
receiving a substantial and bursty amount of data from the
edge devices, emphasizing the significant load that must be
handled. The traffic produced not only increases the network
congestion but also the CPU usage on the pod, resulting in
the need of optimized network and resource management, as



well as a self-healing mechanism. Using monitoring data on
the Gateway API pod (e.g., CPU / RAM usage, and metrics
for the network traffic), a set of policies can be applied as part
of network intelligence and self-healing.

B. Data Collection
The data were collected using Prometheus for logging

metrics and queried from the InluxDB database, where they
were stored for a long period. More specifically, as shown in
Figure 3, we setup four (4) pods. Three (3) pods to simulate
edge devices with diverse network requirements, serving dif-
ferent application types, and one (1) server pod periodically
receiving traffic and acting as a Gateway API. All relevant
metrics (CPU usage, memory consumption, bandwidth, etc.)
were monitored and stored over multiple days. The collected
data were then queried from InfluxDB for further analysis.

Fig. 3. The Illustration of the scenario. Multiple edge devices send dy-
namic traffic to a gateway-api. Various metrics of Gateway API (bandwidth,
CPU/RAM usage, etc.) are measured.

Fig. 4. A data sample of the logged data for one day of the bandwidth metric
(GB/s) of the Gateway API. There are some times in the day when bandwidth
demand is high while the rest of the demand is relatively low.

C. Policy Definition

In Kubernetes (K8S) and networking environments, man-
aging Quality of Service for network resources is critical to
ensure fair allocation and optimal performance across pods.
Kube-OVN, a comprehensive network plug-in for Kubernetes,
enables and facilitates the enforcement of policies that set
maximum bandwidth limits for pods. This section outlines
the methodology for dynamically adapting QoS using Kube-
OVN, highlighting the steps involved in defining, applying,
and adjusting bandwidth policies.

The key policies include:
1) Vertical Scaling: Expanding the vertical capacities of

a pod, by augmenting its computational power through
increased CPU cores and/or RAM, is pivotal when
these pods suddenly demand resources. For instance, an
upgrade from a modest 0.5 CPU core to a robust 2 CPU
cores can substantially elevate pods’ performance.

2) Quality of Service Management: Ensuring that the net-
work not only meets but consistently exceeds predefined
QoS requirements for a diverse array of applications and
services, thereby guaranteeing improved performance
and reliability.

3) AI-driven Policy Enforcement: Using historical data
insights alongside cutting-edge AI models to forecast
future network traffic patterns and intricately anticipate
pod behaviour. This advanced approach empowers us to
enforce the aforementioned policies with foresight and
precision, seamlessly translating into dynamic runtime
adaptations that elevate network efficiency and availabil-
ity.

D. Policy Engine

To start assigning policies (e.g. QoS) we needed to setup
a Policy engine that will take care of applying this policies
in real-time. For e.g. to enforce QoS policy while using
K8s-OVN you must define network policies to specific the
maximum bandwidth for each pod. Again, with Kubernetes
Kube-OVN annotations to specify bandwidth limits for a given
pod the policies are created.

Our Policy engine is built in Python using the k8s client,
to communicate with Kubernetes and perform the appropriate
policies when needed. An example of the QoS policy being
applied by the policy engine can been seen below in figure 5.

For the enforcement of the AI-driven policy, the procedure
is similar as that described above . The only difference is that
the predicted value can be inferred some time before, and thus
the policy can use the result to proactively enforce the policy.

Below, is an illustrative code, that gets the prediction of
the AI model, and applies the policy in the same manner as
above(annotate qos() function ).

E. AI Modelling

Traditional methods of resource management and policy
enforcement in K8S and network environments often rely on
reactive measures, which can lead to suboptimal performance



Fig. 5. Python code of how the policy engine applies the QoS policy
programmatically

Fig. 6. Python code of how the policy engine applies the AI-driven QoS
policy programmatically

and resource allocation, especially for high-demand applica-
tions. Instead, leveraging AI models trained on historical data
enables a proactive approach by predicting future bandwidth
demands and enforcing network policies dynamically using
Kube-OVN.

Thus, building on the previous section, this section describes
the enhanced QoS policy and vertical scaling policy. In this
way, we mean to proactively enforce the QoS / vertical scaling
policy ahead of its needed enforcement with the assistance of
an AI model that is fitted to the historical and periodical data
of a pod.

The AI-fuelled approach utilizes machine learning models
trained on historical network or resource usage data from pods
to forecast future bandwidth or CPU / memory needs. This
predictive capability enables the Kubernetes cluster to apply
different policies in advance, thereby maintaining optimal
network and application performance and resource utilization.
The key steps in this process are as follows:

1) Data Collection: A dummy application was deployed
to simulate periodic bursts of heavy traffic directed at a
specific pod acting as the Gateway API for multiple edge
devices that produced the traffic. The dataset includes
daily traffic patterns, showing periods of peak band-
width utilization, nearly 2GB/s between 09:10-12:30

and 15:45-20:00. In total, 86000 rows/samples were
collected, with each sample corresponding to bandwidth
measurement recorded at one-minute intervals.

2) Feature Engineering and Modelling: Using the his-
torical data collected, as described above, features were
extracted from bandwidth and / or CPU measurements
over time, to train a model to proactively predict high
bandwidth or high CPU load usage, thus to proactively
apply the QoS or vertical scaling policy.
Since the objective was to predict future and periodical
patterns of the bandwidth value of the pod, the extracted
features are aligned with this goal. More specifically the
features extracted are the following:

TABLE I
THE FEATURES INPUT TO THE AI MODEL

Features
Feature Description
hour The hour of the day (0-23) when the mea-

surement was recorded.
minute The minute within the hour (0-59) when the

measurement was recorded.
day The day of the week (0-6), where 0 repre-

sents Sunday and 6 represents Saturday.

bandwidth / CPU
usage lag 1

The bandwidth measurement from the pre-
vious time step (lag 1).

bandwidth / CPU
usage lag 2

The bandwidth measurement from two time
steps before the current one (lag 2).

bandwidth / CPU
usage lag 3

The bandwidth measurement from three
time steps before the current one (lag 3).

3) Predictive Model: The target variable is the high band-
width binary value. which essentially holds values of 1,
when bandwidth measured is above a specific predeter-
mined threshold value, otherwise is 0. The threshold in
our case is set to 0.5 GB/s.
For the training, a Random Forest Classifier is used for
the prediction if there is high bandwidth usage or not.
We only used Random Forest, since from its results, a
perfect score was achieved, as can be seen in the results
table.

4) AI-driven Policy Enhancement: Utilizing historical
data and AI Models to predict future network traffic
patterns and pod behaviour, so the above policies can be
proactively enforced resulting in runtime adaptations.

V. EXPERIMENTAL RESULTS

This section summarizes the results from both the evaluation
of the AI models and the real time application of the network
policies.

Tables III and IV summarize the performance of four
distinct classification algorithms, i.e. Random Forest, Logis-
tic Regression, Decision Tree, and a 5-Nearest Neighbors
approach, for predicting the high-bandwidth class in the
Kubernetes-based testbed. As shown, all methods achieve
near-perfect results in terms of accuracy, precision, and recall
(i.e. 1.0 across the board, except for a slightly lower recall of
0.97 and 0.99 by the logistic model for CPU and bandwidth



prediction, respectively). These exemplary metrics indicate
that the trained models are highly effective at distinguishing
between high-bandwidth / high-CPU load and other classes,
demonstrating robust learning and generalization capabilities
and showcasing the potential of AI in enhancing network
intelligence.

Figures 7 and 8 illustrate the effect of applying AI-driven
policies to dynamically adjust the network configuration and
bandwidth allocation for the Gateway API pod. In Figure 7
(prior to policy enforcement), the pod sustains an incoming
data rate of around 25.6 MB/s. After the policy is applied
(Figure 8), the pod is capable of reaching or surpassing 2 GB/s,
peaking at approximately 2.16 GB/s, thereby accommodating
significantly higher traffic loads. This increase in throughput
highlights the system’s ability to scale its resources in real
time. Such a policy-based approach ensures that mission-
critical Kubernetes services can dynamically adapt to traffic
surges, helping to maintain optimal performance and minimize
downtime.

Figure 9 illustrates the CPU usage metric of the Gateway
API pod over time. It is visible that before 9:59, CPU usage
exceeds the allocated CPU resource request and limit, neces-
sitating vertical scaling. At 9:59, the system performs vertical
scaling, increasing the pod’s allocated resources (request and
limit).

Figure 10 illustrates the effect of applying an AI-driven
policy to proactively increase CPU core allocation for the
Gateway API pod. Here, the AI model notifies for a rising CPU
load and the orchestrator performs the vertical scaling policy
at 9:46 (indicated by the change in the red and orange lines),
several minutes before the pod experiences increasing demand
around 9:49. This proactive scaling eliminates the need for a
potentially costly reactive approach, ensuring efficient resource
allocation.

TABLE II
RESULTS

Accuracy Precision mAP50
YOLOv8 small 0.925 1.000 0.460
YOLOv8 large 0.950 1.000 0.470

TABLE III
EVALUATION METRICS AND PERFORMANCE OF DIFFERENT AI MODELS

FOR THE CPU HIGH DEMAND CLASSIFICATION

Accuracy Precision Recall
Random Forest 1.000 1.000 1.000

Logistic 0.99 0.99 0.97
Decision Tree 1.000 1.000 1.000

Nearest Neighbors (5) 1.000 1.000 1.000

VI. CONCLUSION

In a nutshell, the findings of this work validate the benefits
of combining AI-driven traffic classification with agent-based
and automated network policy enforcement in Kubernetes. By

TABLE IV
EVALUATION METRICS AND PERFORMANCE OF DIFFERENT AI MODELS

FOR THE BANDWIDTH HIGH DEMAND CLASSIFICATION

Accuracy Precision Recall
Random Forest 1.000 1.000 1.000

Logistic 1.000 1.000 0.99
Decision Tree 1.000 1.000 1.000

Nearest Neighbors (5) 1.000 1.000 1.000

Fig. 7. The bandwidth of the Gateway API pod before the applied policy.

accurately forecasting high-bandwidth flows in real time, the
E2C network orchestrator can make informed decisions and
proactively allocate resources, enhancing scalability, QoS, and
the resilience of the underlying network infrastructure.

In conclusion, the developed adaptive, policy-driven frame-
work for network intelligence not only optimizes E2C ap-
plications with remarkable effectiveness but also does so by
meticulously enforcing network rules derived from learned
application patterns. This is achieved through decentralized
decision-making coupled with cutting-edge AI-driven appli-
cation profiling. By seamlessly integrating advanced Artificial
Intelligence for predictive dimensioning and sophisticated pat-
tern mining, the framework empowers dynamic and adaptable
network resource allocation, significantly amplifying network
capacity and enhancing quantitative QoS correlations. The
innovative deployment of cutting-edge AI models, which uti-
lize real-world monitoring data from E2C environments, fur-
ther demonstrates the framework’s ability to enforce adaptive
network policies and execute well-informed decisions. These
capabilities collectively create more intelligent and resilient
networks, ensuring unparalleled performance and unwavering
reliability for E2C applications.

Future efforts will focus on scaling the adaptive, policy-
driven framework for network intelligence to support larger,
more complex networks and refining AI models for better
predictive accuracy and policy enforcement, enabling wider
applicability and enhanced performance.

VII. MATCH & CONTRIBUTION

This contribution aligns closely with the theme of the ICE
IEEE 2025 conference on ”AI-driven Industrial Transforma-
tion: Digital Leadership in Technology, Engineering, Inno-
vation & Entrepreneurship.” The paper presents an adaptive,
AI-driven framework for network intelligence in the Edge-to-
Cloud (E2C) continuum, addressing the growing need for dy-
namic, resilient, and intelligent networks in highly distributed
industrial and technological environments.



Fig. 8. The bandwidth of the Gateway API pod after the applied policy. The
capacity of bandwidth is increased to support the increased demand where
the received bandwidth goes from 30MB/s to 2GB/s.

Fig. 9. Graphical representation of network policy adaptation showing CPU
usage in cores for the Gateway API pod (yellow line), requested CPU (red
line), and CPU limits (orange line) over time. The graph illustrates a restart
period with no CPU usage, followed by increased resource utilization after
the application of a new policy that allowed more CPU resources.

By leveraging real-world monitoring data and deploying
advanced AI models, the framework enables proactive resource
allocation, real-time network optimization, and dynamic policy
enforcement. These capabilities support industrial transfor-
mation by facilitating ultra-reliable communication, optimal
resource usage, and service innovation across heterogeneous
and large-scale infrastructures.

The integration of AI-driven decision-making and dynamic
policy mechanisms fosters digital leadership in networked sys-
tems, aligning with the conference’s focus on utilizing cutting-
edge AI technologies to drive engineering advancements, tech-
nological innovation, and entrepreneurial progress. This work
significantly contributes to the future of industrial networking,
demonstrating practical pathways for embedding intelligence
at the core of next-generation Edge-to-Cloud applications.

ACKNOWLEDGMENT

This work has received funding from the Research and
Innovation Foundation under Restart Research 2016-2020
Programme and the DUAL USE/0922/0024 agreement of
CYGNUS project, and the European Union’s Horizon Europe
TALON project with GA No 101070181.

REFERENCES

[1] A. Zappone, M. Di Renzo, M. Debbah, T. T. Lam, and X. Qian, “Model-
aided wireless artificial intelligence: Embedding expert knowledge in

Fig. 10. Graphical representation of CPU resource allocation in cores showing
the proactive application of a new policy informed by AI-driven CPU load
prediction. The policy is enforced just before resource starvation, as indicated
by the seamless increase in CPU limits (orange line) and requests (red line),
preventing disruption and ensuring optimal resource utilization (yellow area).

deep neural networks for wireless system optimization,” IEEE Vehicular
Technology Magazine, vol. 14, no. 3, pp. 60–69, 2019.

[2] D. Balouek-Thomert, I. Rodero, and M. Parashar, “Evaluating policy-
driven adaptation on the edge-to-cloud continuum,” in 2021 IEEE/ACM
HPC for Urgent Decision Making (UrgentHPC). IEEE, 2021, pp. 11–
20.

[3] I. Čilić and I. P. Žarko, “Adaptive data-driven routing for edge-to-cloud
continuum: A content-based publish/subscribe approach,” in Global IoT
Summit. Springer, 2022, pp. 29–42.

[4] M. Wang, T. Schirmer, T. Pfandzelter, and D. Bermbach, “Shutpub:
Publisher-side filtering for content-based pub/sub on the edge,” in Pro-
ceedings of the 7th International Workshop on Edge Systems, Analytics
and Networking, 2024, pp. 13–18.

[5] T. Pfandzelter and D. Bermbach, “Towards a benchmark for fog data
processing,” in 2023 IEEE International Conference on Cloud Engineer-
ing (IC2E). IEEE, 2023, pp. 92–98.

[6] S. Sekigawa, C. Sasaki, and A. Tagami, “Toward a cloud-native telecom
infrastructure: Analysis and evaluations of kubernetes networking,” in
2022 IEEE Globecom Workshops (GC Wkshps). IEEE, 2022, pp. 838–
843.

[7] The Kubernetes Authors, “Kubernetes: Production-grade container
orchestration,” 2024, accessed: 2024-01-30. [Online]. Available:
https://kubernetes.io/

[8] The Kube-OVN Developers, “Kube-ovn: A kubernetes-native sdn
based on ovn,” 2024, accessed: 2024-01-30. [Online]. Available:
https://kube-ovn.io/

[9] The Prometheus Authors, “Prometheus: Monitoring system & time
series database,” 2024, accessed: 2024-01-30. [Online]. Available:
https://prometheus.io/

[10] Kepler Developers, “Kepler: Kubernetes-based efficient power level
exporter,” 2024, accessed: 2024-01-30. [Online]. Available: https:
//kepler.sustainable-computing.io/

[11] InfluxData, “Influxdb: Open source time series database,” 2024,
accessed: 2024-01-30. [Online]. Available: https://www.influxdata.com/

[12] The Prometheus Authors, “Prometheus node exporter: Collecting
system metrics,” 2024, accessed: 2024-01-30. [Online]. Available:
https://github.com/prometheus/node exporter

[13] The Kubernetes Authors, “Kube-state-metrics: Add-on agent to generate
cluster state metrics,” 2024, accessed: 2024-01-30. [Online]. Available:
https://github.com/kubernetes/kube-state-metrics

[14] A. Cañete, A. Rodrı́guez, M. Amor, and L. Fuentes, “Energy-aware
placement of network functions in edge-based infrastructures with open
source mano and kubernetes,” in International Conference on Service-
Oriented Computing. Springer, 2022, pp. 183–195.

https://cygnus-project.eu/
https://talon-project.eu/
https://kubernetes.io/
https://kube-ovn.io/
https://prometheus.io/
https://kepler.sustainable-computing.io/
https://kepler.sustainable-computing.io/
https://www.influxdata.com/
https://github.com/prometheus/node_exporter
https://github.com/kubernetes/kube-state-metrics

	Introduction
	Literature Review
	Architecture
	Kube-OVN
	Ovn-central
	Ovn-ovs
	Kube-ovn-cni
	Kube-ovn-controller

	Real-time Monitoring

	Experimental Scenarios
	Scenario
	Data Collection
	Policy Definition
	Policy Engine
	AI Modelling

	Experimental Results
	Conclusion
	Match & Contribution
	References

