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Abstract—Generative Artificial Intelligence (GenAI) and auto-
mated attacks on AI models raise concerns about the credibility
and reliability of AI systems. Specifically, for civilian applications,
there is an increasing need for AI systems to be robust, trans-
parent, and interpretable to earn the trust of decision-makers.
To effectively address the challenge of learning with enhanced
explanations in constrained edge applications under conditions
of massive adversarial attacks, we benchmark and present an
Explanation-Driven Adversarial approach. By harvesting multi-
media data collected from drones at the edge and augmenting it
with diverse and massive adversarial examples, we transparently
train explainers and robustify Neural Networks (NNs) to improve
the AI model’s fidelity. The new and robust AI model performs
exceptionally well against novel and unseen attack types and
concept drifts. Finally, through benchmarking across diverse
adversarial attacks, we extend research in sensitive application
domains and promote the adoption of more responsible and
informed AI integration.

Index Terms—adversarial explanations, adversarial attack
benchmarking, robust and trustworthy explainability, AI model
interpretability with confidence scores

I. INTRODUCTION

In civilian applications, citizen protection involves a wide
range of actors, including individuals, Law Enforcement Agen-
cies (LEAs), first responders, and governmental agencies. Re-
cent advancements in Artificial Intelligence (AI) have driven
innovations across various traditional AI applications, includ-
ing edge AI and computer vision. To enhance the safety of
people and the environment, numerous efforts are being made
to take advantage of the progress of these technologies to
increase situational awareness in civilian applications. Key
functions of these applications include tracking and surveil-
lance, object detection, reconnaissance, intelligence analysis,
and training. However, despite the potential of AI in civil-
ian applications, several challenges must be addressed. For
instance: (i) civilian AI systems must be transparent and
interpretable to prevail on decision-makers and enable real-
time risk analysis of the landscape; this is challenging because
many AI techniques function as black boxes, preserving the
internals of the decision paths that produce the results and
lacking in transparency and interpretability; (ii) civilian AI
systems must be robust and reliable; this presents difficulties,
as research has shown that AI methods may be vulnerable to
imperceptible input data manipulations and concept drifts; (iii)
distributed and multimodal big data originate from various,

albeit low-cost, Internet of Things (IoT) and sensor-equipped
devices (e.g., drones equipped with cameras, accelerometers,
telemetry sensors, etc.). Since many AI techniques rely on
Machine Learning (ML), which requires a vast amount of
training data, a challenge arises from the frequent lack of
accurate and sufficient data in civilian and environmental
applications. Furthermore, these data streams necessitate dif-
ferent processing modalities (e.g., online vs. offline; federated
vs. centralized), as well as alignment, cleaning, and fusion,
before they feed AI systems. In this work, we focus on
the implementation of Neural Networks (NNs) in resource-
constrained edge environments, processing online multimedia
streams to address adversarial explanations’ challenges and
ensure reliable real-time conclusions for decision-makers and
citizens.

II. LITERATURE REVIEW

This study builds upon our earlier work [1], which is one of
several studies that explore novel applications of Adversarial
Explainability (AE). Adversarial and explainable AI (XAI)
combine the benefits of explanatory analysis and adversarial
robustness at the same time. Given the broad spectrum of
research in this area, using a variety of AI algorithms is
crucial to mitigate risks such as adversarial attacks on AI
models, low data quality, or malicious users. In this work,
we focus on improving the robustness of NNs in resource-
constrained multimedia applications on the edge. To achieve
this, we orchestrate a strategic deployment of a multitude of
adversarial attacks on AI models, accompanied by dynamic
data augmentation infused with diverse concept drifts. This
approach is designed to rigorously assess and amplify the
models’ robustness. Our findings culminate in the delivery of
deeply insightful explanations, reinforced by confidence scores
that resonate with clarity and trust in AI models.

Gao et al. [2] investigate how NNs resist adversarial at-
tacks in classification tasks. They demonstrate the adversarial
fragility of neural network-based classifiers through matrix-
theoretic derivations and specific classification cases. This
fragility stems from the fact that neural networks often rely
on compressed features to complete classification tasks. There-
fore, in order to alter the limited feature subsets that neural
networks use, perturbations must be included via adversarial
attacks. According to their theoretical findings, when the input



dimensionality increases, the adversarial robustness of the
neural network may decrease.

Mei et al. [3] propose a new benchmark for evaluating
model robustness against various noises, including natural
distortions and adversarial attacks, to investigate how deep
learning models handle challenges in remote sensing im-
age classification. Their study experiments with several deep
learning models and develops publicly available datasets with
different levels of noise that can be used in future research.
Their findings provide critical insights into building more
robust and reliable deep learning systems for remote sensing
applications.

An intrusion detection system integrating Generative Ad-
versarial Networks (GANs), Multi-Scale Convolutional Neural
Networks (MSCNNs), and Bidirectional Long Short-Term
Memory (BiLSTM) networks is presented by Benchama et
al. [4]. For interpretability, they employ Local Interpretable
Model-Agnostic Explanations (LIME). Their system detects
intrusions by synthesizing network traffic data that includes
both typical and malicious patterns. The elucidation of the
model’s decisions is facilitated through the integration of
LIME.

Card et al. [5] investigate the adversarial weaknesses of
an NN-based malware classification system in various online
and dynamic analysis settings. They use the state-of-the-art
technique, SHapley Additive exPlanations (SHAP), to inform
adversarial attackers about features critical to classification
decisions. A Feed Forward Neural Network (FFNN) is trained
for malware categorization. Their results demonstrate a notable
occurrence of evasion in specific attack scenarios, highlighting
the apparent susceptibility of malware classifiers to adversarial
manipulation.

Wickstrøm et al. [6] describe how selected hyperparameters
in XAI evaluations can be manipulated. Since there is no fixed
set of “correct” explanations, such choices can significantly
impact evaluation outcomes. They identify two (2) types of
manipulations: one that makes a method seem better, and
another that changes comparisons between methods. Their
experiments show that even minor changes in settings can
profoundly affect evaluation results. To mitigate this issue,
they develop a ranking methodology that reduces manipulation
risks that would make the ranking in XAI fairer and more
reliable.

Baniecki and Biecek [7] investigate how adversaries can
manipulate explanation methods in AI systems, potentially
leading to misleading interpretations. While they provide a
unified framework and taxonomy to classify adversarial at-
tacks, they discuss very few defense strategies to increase the
robustness of explanation methods.

Wang et al. [8] explored different methods that use gradients
to explain how NNs make decisions. They classified these
methods into four (4) groups and explained how they have
been enhanced over time. Grad-CAM technique is discussed,
which highlights the most important areas of an image that
influence a model’s decision by using gradient information
from the last convolutional layer. This also looks at ways

to evaluate these explanation methods, including how well
humans can understand them and how accurate they are, while
the authors also discuss the key challenges in making AI
models more explainable using gradient-based techniques.

Large-scale practical AI implementation requires the capac-
ity to not only achieve high performance but also to understand
and defend its predictions, especially in complex multimedia
edge applications. Our work demonstrates that explanation-
driven adversarial attacks offer a powerful framework for
these scenarios, merging the strengths of XAI and adversarial
robustness to foster trust between AI systems and human
operators.

By providing clear and interpretable adversarial explana-
tions, our approach bridges the gap between the intricate
inner workings of sophisticated algorithms and the practical
knowledge of end users. This transparency in decision-making
is critical for the safe and widespread adoption of AI across
fields such as environmental monitoring, situational awareness,
and other civilian applications requiring secure assurances.

Breaking new ground beyond the limitations of past studies
that focus solely on either explainability or adversarial robust-
ness, our innovative method weaves together a spectrum of
attack strategies. This integration generates meaningful cause-
and-effect insights, secured by objective confidence scores that
are as solid as they are informative. Our approach accelerates
the process of uncovering the fundamental causes within object
segmentation and detection tasks while significantly enhancing
overall system reliability and trustworthiness, setting a new
basis for trust in AI.

III. DATASET OVERVIEW

A. Fire Images

A varied collection of fire images, depicting different fire
incidents, is used to increase situational awareness of vital
infrastructures and environmental protection. To provide a
wide range of fire types, sizes, and contextual scenarios, these
images were obtained from several datasets. They capture
different environmental conditions and fire cases from different
angles and resolutions. We used and fused publicly available
images from the Fire Detection Dataset, which features fire
images captured by a drone camera, along with public fire
images from the NASA Space Apps Challenge in 2018. The
fire images are characterized by the following attributes:

• Diversity: Images show both indoor and outdoor fires,
ranging from small flames to large conflagrations.

• Complexity: Scenes have different amounts of occlu-
sions, lighting conditions, and smoke levels.

• Annotations: Bounding boxes are added to each image
to mark fire zones, providing ground truth for AI model
training and assessment.

• Big Data: Dataset is extensive in both volume and
velocity, as training involves massive amounts of data,
measured in gigabytes, collected by a drone’s integrated
camera and processed in real-time.

The total volume of harvested images is 10GB.

https://github.com/marcotcr/lime
https://github.com/marcotcr/lime
https://shap.readthedocs.io/en/latest/
https://pypi.org/project/grad-cam/
https://www.kaggle.com/datasets/atulyakumar98/test-dataset
https://www.kaggle.com/datasets/phylake1337/fire-dataset


B. Adversarial Attack Images

Images that have been purposefully altered to deceive an
AI system, specifically its object detection module, are known
as adversarial attack images. The purpose of these adversarial
attacks is to evaluate the AI model’s resilience under various
conditions. At their core, adversarial techniques have been
extensively employed to manipulate and disrupt the same
images, as elaborated in detail below.

C. Dataset Statistics and Attacks

In the YOLO [9] experiments, the dataset consists of the
aforementioned fire images and their adversarially attacked
counterparts. The classification process involved five (5) dis-
tinct categories, namely fire (benign) and four (4) different
types of attack, with each category differentiated based on
the attack criteria. The dataset is comprised of a balanced
distribution of both normal and attacked images to guarantee
an unbiased assessment. In Grad-CAM [10], using a CNN-
ResNet50-Classifier, we analyze both the normal fire dataset
and the adversarially attacked images from the different attack
types.

Table I provides a summary of the dataset statistics.

TABLE I: Dataset Statistics

Category Training Set Validation Set
Normal Fire Images 3527 150
Attacked Images by DeepFool 3527 150
Attacked Images by Fast Gradient 3527 150
Attacked Images by NewtonFool 3527 150
Attacked Images by PGD 3527 150
Attacked Images by Square 3527 150
Total Number 21162 900

IV. LOGICAL MODULES AND ADVERSARIAL
EXPLANATIONS ARCHITECTURE

Fig. 1: Adversarial Explanations Architecture

Figure 1, describes the overall architecture of the adver-
sarial explanations, and a detailed description of each module
will be discussed in the next sections.

A. Data Collection from Edge Devices

The first logical module describes the collection of data after
being captured by an embedded camera on a drone. The data is
then persisted for local processing and later streamed through
a multimedia streaming server for cloud-based training.

B. Streaming, Preprocessing and Analytics Module

To address wildfires and environmental monitoring, the
preprocessing module ensures that the attributes of the col-
lected multimedia video streams are split into images and
are appropriate for a situational awareness scenario. In this
step, to guarantee abundant feature extraction, the images
are resized, reshaped, or filtered. The preprocessing module
utilizes Keras and skimage. More specifically, following the
visual data exploration, we apply data normalization, scaling,
and normalizing within a given numeric range, i.e. [0-1].
Keras is used to convert the images into arrays. Subsequently,
we prepare and divide the images for binary or multiclass
categorization. Binary classification focuses solely on the
differentiation between attacked images, characterized as ma-
licious, and non-attacked images, characterized as normal. In
contrast, multiclass classification predicts the category of the
image and verifies whether the AI system has been subjected
to an attack. If an attack is detected, it further identifies the
specific nature/category of the attack.

C. Training and Evaluation of the Classifier

The clean processed data is then used to train and assess
a CNN Model, which serves as the baseline classifier for
initializing a particular attack method, as shown in step 1 &
step 2 of Figure 1 .

To determine the CNN Model’s robustness, as measured
by accuracy, two (2) specific conditions must be met: (i)
after applying a selected evasion attack (e.g., Deepfool, FGM,
Newtonfool, PGD, and Square Attack) from the ART library;
and (ii) after adversarial training, to determine the percentage
at which the CNN Model’s accuracy may recover from the
attack, as indicated in Table IV. The classifier from the
previously trained CNN Model is used to launch an informed
(i.e. labeled) attack, generating adversarial imagery examples.
This labeled data is then utilized as examples for testing
and evaluation using XAI features and confidence scores.
To rigorously evaluate our model’s performance accuracy,
we follow a standard common methodology during the AI
model training process by dividing the dataset into separate
training (70%) and validation (30%) sets. Additionally, we
use a variety of Keras layers, such as Sequential, Dense,
Flatten, Conv2D, MaxPooling2D, Activation, and Dropout, to
construct the CNN Model. Depending on the training task and
the supporting learning objective, the activation functions for
binary and multiclass classification differ. Finally, the CNN
Model’s accuracy is assessed using the validation set and
classification reports in an average of K-fold splits.

https://keras.io/
https://scikit-image.org/
https://keras.io/
https://adversarial-robustness-toolbox.readthedocs.io/en/latest/


Attack Category norm eps eps step decay max iter targeted num random batch size nb grads eta p init nb restarts
DeepFool - 0.000001 - - 10 - - 1 10 - - -
Fast Gradient Method (FGM) np.inf 1 0.1 - - FALSE 5 - - - - -
NewtonFool - - - - 10 - - 1 - 0.01 - -
Projected Gradient Descent (PGD) np.inf 0.3 0.1 None 10 FALSE 0 5 - - - -
Square Attack np.inf 0.3 - - 100 - - 128 - - 0.8 1

TABLE II: Adversarial Attacks Configuration Parameters

Fig. 2: Attacked Image

D. Adversarial Imagery Examples Generation

In Figure 2, we illustrate how additional adversarial exam-
ples emerge consistently when the original image undergoes
meticulous preprocessing and vigorous attacks. It becomes
evident that while DeepFool and NewtonFool may initially
appear to leave the data untouched, the reality is different
regarding their impact on the model’s performance.

1) Evasion Attacks: Adversarial Evasion (AE) attacks were
first created for imagery data, where the main goal is to hide
any alterations from human sight [11].

Adversarial attacks are categorized into white-box, where
attackers have full model access for accurate gradient com-
putation, and black-box, which rely solely on input-output
queries. In our experiments, we employed three (3) different
types of adversarial attacks, detailed below :

• Optimization Attacks [12]: These attacks systematically
distort an image and deceive a model while minimizing
noticeable changes. They use mathematical techniques,
such as gradient descent, to detect the least identifiable
way of fooling the model.

• Gradient-Based Attacks [13]: Gradient-Based Attackers
exploit different levels of model access to manipulate
its outputs using gradient-based methods to generate
adversarial inputs. By taking advantage of model vulner-
abilities during training and inference, they manage to
create misclassifications or steal sensitive information.

• Query-Based Attacks [14]: These attacks interact with
the target model to generate adversarial images with
subtle perturbations, misleading the model in the process.
They optimize these perturbations to make them harder

to detect. Decision-based attacks are more common than
score-based attacks because they are more realistic.

TABLE III: Comparison of Attack Methods

Method Type Access Feature Limitations

DeepFool Optimization White-box Iterative,
boundary-
focused

Limited for
deep, highly
non-linear
networks.

FGM Gradient-
based

White-box Fast,
single-step
attack

Less
effective
than
iterative
methods.

NewtonFool Optimization White-box Newton’s
method
optimization

Expensive
due to
second-
order
calculations.

PGD Gradient-
based

White-box Projected
steps for
robustness

High cost
with many
iterations.

Square
Attack

Query-based Black-box Random
square per-
turbations

Requires
many
queries;
larger per-
turbations.

In this work, we experimented with several types of adver-
sarial attacks. Table III summarizes the main differences be-
tween DeepFool [15], FGM [16], NewtonFool [17], PGD [18],
and Square Attack [19], which we used to demonstrate and
benchmark the proposed robustification approach.

These attacks involve various trade-offs between speed, ef-
fectiveness, and computational cost, making them suitable for
different scenarios based on the objectives and model defenses.
For this study, we employed specific configuration parameters
to launch the attacks, as shown in Table II. In addition, to
encourage the research community to further investigate these
issues, we have made publicly available a dataset [20] that is
created by initiating these particular adversarial attacks.

E. Explain and Justify Decision-making through XAI Features
and Confidence Scores

Figure 1 illustrates in detail the steps involved in explaining
how adversarial attacks are initiated. First, we perform a pre-
attack evaluation on the baseline model, which is then used
to initiate our attack and generate the adversarial examples.
A post-attack evaluation follows to assess the performance of
the model on the perturbated data. The resulting adversarial
images (perturbated data) are then used to augment the dataset



that includes both benign and attacked images and update the
model’s knowledge under attack conditions. After generating
the perturbated data, the images are sent to the XAI Model
Module.

As part of the XAI process, a CNN classifier is constructed
using this augmented dataset, which consists of two (2) data
classes: “fire” (representing normal instances of fire alongside
the attacked fire images) and “non-fire” (representing back-
ground images without fire). The CNN classifier is designed to
be robust against adversarial attacks and employs Grad-CAM
to generate a significance map of salient pixels, providing
explanations even when attacked data instances are present.

Meanwhile, YOLOv8 has been trained on five (5) classes
of data: “fire” (representing normal instances) and “fgm”,
“deepfool”, “newtonfool”, “pgd”, “square attack” (represent-
ing different types of adversarial occurrences). Explainability
is provided through YOLO’s bounding boxes and confidence
scores, while also serving as the attack type detector since
it can also detect and classify the specific adversarial attack
applied.

V. EXPERIMENTAL RESULTS ON DIVERSE ATTACKS WITH
EXPLANATIONS AND CONFIDENCE SCORES

As shown in Table IV, the NewtonFool ranks as the least
effective among the tested attacks. The Base CNN Model
initially has an accuracy of 85%, which drops to 42% after
the attack. Although adversarial training does not fully restore
robustness, NewtonFool consistently demonstrates lower effi-
cacy, as the adversarial training does not restore the accuracy
of the model (accuracy after adversarial training - 44%).
Conversely, while DeepFool shows promising effectiveness
with a decrease to 10% accuracy, the anticipated improvements
from the robustification process are not fully realized as the
accuracy shows a light increase to 65% accuracy. Both the
Fast Gradient Method (FGM) and PGD significantly impact
CNN model performance, with a decreased to 10% of the
accuracy of the base model 90% and 87% respectively, while
the robustification mechanism achieves strong results in these
cases as it manages to regain the accuracy of the models from
10% to 88% for FGM and to 86% for PGD.

Attack Category CNN Model Attacked Model Robust CNN

DeepFool 0.85 0.10 0.65
FGM 0.90 0.10 0.88
NewtonFool 0.82 0.42 0.44
PGD 0.87 0.10 0.86
Square Attack 0.87 0.14 0.63

TABLE IV: Accuracy of CNN Training, Attacked, and Ro-
bustified Models

In the following paragraphs, we present the YOLO results
alongside the explanation outcomes with confidence scores.
The results are summarized in three (3) tables. Table V
establishes the baseline performance evaluation on well-known
datasets and NN models. ResNet50 achieves an accuracy of
67% on CIFAR-100, while YOLOv8 (small and large) yield

mAP50 scores of 0.446 and 0.478, respectively, on the COCO
dataset. Table VI compares our proposed methods. Notably,
the CNN-Res50-Robust-Classifier attains high performance
with 98% accuracy and 97% precision, outperforming the
YOLOv8 models—which register lower accuracy (58–62%),
precision (72–79%), and mAP50 (0.25–0.30). Finally, Ta-
ble VII details how YOLO’s confidence scores vary under dif-
ferent adversarial attacks. While the model maintains relatively
high performance under normal conditions (with a confidence
score of 0.76), its performance drops significantly for certain
attacks (e.g., DeepFool, with a score of 0.39), illustrating the
YOLO framework’s vulnerability to adversarial perturbations.

In addition, we can see the explanations of both YOLO
and the Resnet-classifier with Grad-CAM. In Figure 3, YOLO
successfully highlights the fire-affected area even under attack
while also identifying the type of attack along with a confi-
dence score. Figure 4 showcases the explanation robustness
of the ResNet classifier, where the fire-related explanations
remain valid even under adversarial attacked data instances.
This robostify the models, as even under attack the model and
the explanations still work well, and help us understand also
how different attacks behave on the models.

These figures depict the varying impacts of different attacks
on the images. The FGM attack stands out as it creates
significant confusion for both models, resulting in difficulties
in accurately identifying and articulating the presence of fire.
In comparison, the DeepFool and NewtonFool attacks exhibit
similar effects, leading to a less pronounced but still notable
challenge in image interpretation. This emphasizes the distinct
ways in which each attack affects the models’ ability to
process visual information.

TABLE V: Baselines YOLOv8 on COCO dataset & ResNet50
on CIFAR-100

Accuracy mAP50
ResNet50 0.67 -

YOLOv8 small - 0.446
YOLOv8 large - 0.478

TABLE VI: Results

Accuracy Precision mAP50
CNN-Res50-Robust-Classifier 0.98 0.97 -

YOLOv8 small 0.58 0.72 0.25
YOLOv8 large 0.62 0.79 0.30

TABLE VII: Yolo Confidence score along different attacks

Class Precision Recall Conf.Score
Normal Fire 0.89 0.90 0.76
Deepfool 0.43 0.10 0.39

Fast Gradient 1.0 0.55 0.52
Newtonfool 0.44 0.51 0.40

PGD 1.0 0.86 0.74
Square Attack 0.98 0.83 0.72



Fig. 3: YOLO explanations on examples

Fig. 4: Grad-CAM explanations on examples

VI. CONCLUSION

In conclusion, our approach addresses high-physical risk
scenarios in critical infrastructures and complex environments.
The robustified model, deployed on an edge processor aboard a
drone, achieves high accuracy and precision in object detection
and classification. Additionally, adversarial explanations from
the YOLO large model offer valuable insights into potential
attacks. By combining these explanations with Confidence
Scores, our method provides a promising solution for applica-
tions demanding exceptional reliability in object detection and
image classification. Furthermore, our research demonstrates
that explanation-driven adversarial attacks are an effective
approach to enhancing the security of multimedia edge ap-
plications. By integrating clear and interpretable adversarial
insights with robust confidence scoring, our robustified model
not only identifies existing vulnerabilities but also provides
actionable awareness to improve model resilience.

In future work, we aim to enhance the proposed Adversarial
Explanations framework by incorporating advanced localiza-
tion features, further supporting more informed decision-
making processes. Through the use of adversarial attack types,

a larger dataset, and performance measurements, we also plan
to further expand our study to better benchmark our approach.
We also intend to analyze how the results and attacks of
explainability affect performance and computational costs.
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